

REVISION HISTORY

81

01

CUSTOMER

BMC

4/24/2015

RTP10-3RRU

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES (± 0.030")
DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF VALMONT INDUSTRIES IS STRICTLY PROHIBITED.

DESCRIPTION 3 LEVEL RRU / EQUIPMENT RACK

CUSTOMER

81 | 01

FOR RTP FRAMES

Engineering Support Team: 1-888-753-7446

Atlanta, GA Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

				A valmont COMPANY
	CPD NO.	DRAWN BY CEK 4/23/2015	ENG. APPROVAL	PART NO. RTP1
C	CLASS SUB	DRAWING USAGE	CHECKED BY	DWG. NO.

BMC 4/24/2015

RTP10-3RRU RTP10-3RRU

OF PAGE

RTP FRAMES & RTP-RRU BALLAST EQUATIONS

BALLAST EQUATION WITH 1.5 SAFETY FACTOR:

FRONT WIND = WT =
$$\frac{(((A_L*H_1)+(E_L*H_2))1.5) - (W_A*7.25)}{3.625}$$

BACK WIND = WT =
$$\frac{(((A_L*H_1)+(-E_L*H_2))1.5) - (W_{RRU}*7.25)}{3.625}$$

BALLAST EQUATION WITH REV. G LOADING:

FRONT WIND = WT =
$$\frac{(((AL^*H_1)+(EL^*H_2))1.6) - (WA^*7.25)}{3.625 (0.9)}$$

BACK WIND = WT =
$$\frac{(((A_L*H_1)+(-E_L*H_2))1.6) - (W_{RRU}*7.25)}{3.625 (0.9)}$$

$$W = WT / 3$$

= EQUIPMENT LOAD (NON-FACTORED)	lbs
= ANTENNA LOAD (NON-FACTORED)	lbs
= HEIGHT FROM ROOFTOP	ft
= TOTAL BALLAST WEIGHT	lbs
= BALLAST WEIGHT PER TRAY	lbs
= 200 + EQUIPMENT WEIGHT	lbs
= 260 + ANTENNA WEIGHT	lbs
	= ANTENNA LOAD (NON-FACTORED) = HEIGHT FROM ROOFTOP = TOTAL BALLAST WEIGHT = BALLAST WEIGHT PER TRAY = 200 + EQUIPMENT WEIGHT

TOLERANCE NOTES

TOLERANCES ON DIMENSIONS, UNLESS OTHERWISE NOTED ARE: SAWED, SHEARED AND GAS CUT EDGES ($\pm\,0.030$ ") DRILLED AND GAS CUT HOLES (± 0.030") - NO CONING OF HOLES LASER CUT EDGES AND HOLES (± 0.010") - NO CONING OF HOLES BENDS ARE ± 1/2 DEGREE

ALL OTHER MACHINING (± 0.030")

ALL OTHER ASSEMBLY (± 0.060")

PROPRIETARY NOTE:
THE DATA AND TECHNIQUES CONTAINED IN THIS DRAWING ARE PROPRIETARY INFORMATION OF VALMONT INDUSTRIES AND CONSIDERED A TRADE SECRET. ANY USE OR DISCLOSURE WITHOUT THE CONSENT OF

DESCRIPTION 3 LEVEL **RRU / EQUIPMENT RACK**

FOR RTP FRAMES

Support Team: 1-888-753-7446

Los Angeles, CA Plymouth, IN Salem, OR Dallas, TX

ENG. APPROVAL CPD NO. DRAWN BY RTP10-3RRU CEK 4/23/2015 DRAWING USAGE CHECKED BY DWG. NO. RTP10-3RRU 81 01 **CUSTOMER** BMC 4/24/2015